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* Early days & recent developments in the
field of quantum oscillations

* Hubbard model on square lattice in
transverse magnetic field

* High-temperature quantum oscillations
and the key role of velocity vertex



Fig. I.1. First observation of oscillatory field dependence of susceptibility
in bismuth (de Haas and van Alphen 19305).
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D. Schoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, England, 1984).



Fig. 2.1. Schematic sketches of Landau tubes for (a) spherical surfaces of
constant energy, (b) ellipsoidal surfaces of constant energy (direction of
long axis shown by arrow). The FS is indicated by the broken curve and
only the parts of the Landau tubes inside the FS are occupied at T = 0
(after Chambers 1956 and Gold 1968).
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Passage of Landau tubes across the Fermi surface modulates the DOS
(and all other quantities...)

D. Schoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, England, 1984).
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Fig. 4.1. (a) Magnetothermal oscillations in Bi for H along a binary axis
(Kunzler er al. 1962) T ~ 1.3K. (b) dHVA oscillations of dM/dH, T ~
0.6 K (unpublished data of Barklie and Shoenberg 1974). The rate of
sweep was not uniform, so distance along chart is not quite linear in H; the
fields of the various oscillations are as‘marked in (a). Spin-splitting in the
last oscillation (and the next to last in (b)) is clearly visible. Comparison of
(a) and (b) 1llustrates the similarity of line shape in the two effects and the
difference of the H dependence of amplitude. However, the comparison
can only be qualitative since (a) and (b) are at different temperatures on
different crystals and moreover z < | is true for only the last two or three
oscillations before the quantum limit (at about 15kG). Further illus-
trations of the oscillations of dM/dH in Bi are shown in figs. 8.8 and 8.9.
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Figure 2

Quantum oscillations measured in underdoped YBa,Cuz O, 5 by a variety of experimental techniques,
including (a) in-plane four contact resistivity (data from 32), (b) magnetic torque (data from 45), (c) ¢-axis four
contact resistivity (data from 39), and (d) contactless resistivity measured using a resonant proximity detection
oscillator (data from 35).
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Two-dimensional gas of massless Dirac fermions in

graphene
K. S. Novoselov', A. K. Geim', S. V. Morozov?, D. Jiang', M. |. Katsnelson?, I. V. Grigorieva’, S. V. Dubonos?
& A. A. Firsov®
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Figure 2 | Quantum oscillations in graphene. SdHO at constant gate voltage
Vy= —60Vasa function of magnetic field B (a) and at constant B = 12 Tas
a function of Vg (b). Because p does not change greatly with V, the
measurements at constant B (at a constant w .7 = uB) were found more
informative. In b, SdAHOs in graphene are more sensitive to Tat high carrier
concentrations: blue, T = 20K; green, T = 80K; red, T = 140K. The Ao,
curves were obtained by subtracting a smooth (nearly linear) increase in ¢
with increasing V and are shifted for clarity. SdHO periodicity AV at
constant B is determined by the density of states at each Landau level
(xAV, = fBl/¢,), which for the observed periodicity of ~15.8 Vat B = 12T
yields a quadruple degeneracy. Arrows in a indicate integer v (for example,
v = 4 corresponds to 10.9T) as found from SAHO frequency By = 43.5T.
Note the absence of any significant contribution of universal conductance
fluctuations (see also Fig. 1) and weak localization magnetoresistance, which
are normally intrinsic for 2D materials with so high resistivity.
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Figure 3 | Dirac fermions of graphene. a, Dependence of By on carrier
concentration n (positive n corresponds to electrons; negative to holes).

b, Examples of fan diagrams used in our analysis” to find B Nis the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of By, respectively. Note that the curves extrapolate to different
origins, namely to N = 1/2 and N = 0. In graphene, curves for all n
extrapolate to N = 1/2 (compare ref. 7). This indicates a phase shift of * with
respect to the conventional Landau quantization in metals, The shift is due
to Berry’s phase'**, ¢, Examples of the behaviour of SAHO amplitude Ao
(symbols) as a function of T for m_ = 0.069 and 0.023m, (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotron mass m _ of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
¢« 1/300 the speed of light.
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High-temperature quantum
oscillations caused by recurring
Bloch states in graphene superlattices

R. Krishna Kumar,“*? X. Chen,” G. H. Auton,” A. Mishchenko,” D. A. Bandurin,’
S. V. Morozov,*’ Y. Cao,? E. Khestanova," M. Ben Shalom,’ A. V. Kretinin,*¢

K. S. Novoselov,? L. Eaves,>” 1. V. Grigorieva,' L. A. Ponomarenko,>

V. L. Fal’ko,"** A. K. Geim"?**

Cyclotron motion of charge carriers in metals and semiconductors leads to Landau
quantization and magneto-oscillatory behavior in their properties. Cryogenic
temperatures are usually required to observe these oscillations. We show that graphene
superlattices support a different type of quantum oscillation that does not rely on Landau
quantization. The oscillations are extremely robust and persist well above room
temperature in magnetic fields of only a few tesla. We attribute this phenomenon to
repetitive changes in the electronic structure of superlattices such that charge carriers
experience effectively no magnetic field at simple fractions of the flux quantum per
superlattice unit cell. Our work hints at unexplored physics in Hofstadter butterfly systems
at high temperatures.

Krishna Kumar et al., Science 357, 181-184 (2017) 14 July 2017
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Fig. 2. Concentration and field dependence of Brown-Zak (BZ) oscil-
lations. (A) Low-T fan diagram o,,(n, B) for a superlattice device with a =
13.9 nm. The gray scale is logarithmic: white, 0.015 mS; black, 15 mS.

(B) Same device as (A) but at 150 K. Logarithmic gray scale: white, 0.1 mS;
black, 10 mS. The dotted lines denote B = ¢,/gS. (C) Same as (B) but for
Aoy, obtained by subtracting a smooth best-fit background (26). Linear gray
scale: £0.3 mS. (Inset) Fundamental frequency Bg of BZ oscillations found in

our different devices as a function of ng = 8/v/3a. (D) Near B = ¢,/qS

(dashed lines are for g = 3 to 6), local changes in o,, and c,, resemble
magnetotransport in metals near zero field, as illustrated by the green inset
curves. (E) Part of (C) near the second-generation NP for electron doping
is magnified and plotted as a function of ¢g/¢. The main maxima in Aoy
occur at o4/6 = q. A few extra maxima for p = 2 and 3 are indicated by black
and green arrows, respectively (see fig. S6 for details). (F) Corresponding
behavior of Acy, (smooth background subtracted). Its zeros align with the

red maxima in Ac,,.
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PHYSICAL REVIEW VOLUME 133, NUMBER 4A 17 FEBRUARY 1964

Bloch Electrons in a Uniform Magnetic Field*

E. BrowN
Rensselaer Polytechnic Institute, Troy, New York
(Received 29 August 1963)

The physical periodicity of a space lattice is not destroyed by the presence of a uniform magnetic field.
It is shown that a ray group of unitary operators, isomorphic to pure translations, commutes with the
Hamiltonian in this case. Such a group has the characteristic property that 4 B=exp[i¢(4,B)]C, where 4,
B, and C are elements of the group and ¢ is a numerical factor. Representation theory applied to this group
yields the characteristic degeneracies of levels in magnetic fields, as well as the transformation properties of
eigenfunctions. By means of these it is possible to construct an effective Hamiltonian appropriate to finite
magnetic fields in crystals.
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PHYSICAL REVIEW VOLUME 134, NUMBER 6A 15 JUNE 1964

Magnetic Translation Group*

J. Zax
National Magnel Laboratory,t Massachusetts Institute of Technology, Cambridge, M assachuseils
(Received 6 December 1963)

In this paper a group-theoretical approach to the problem of a Bloch electron in a magnetic field is given.
A magnetic translation group is defined and its properties, in particular its connection with the usual transla-

tion group, are established.
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Fig. 3. BZ oscillations
as recurring Bloch
states in small effective
fields. Solid curves: o,, at
100 K for electron and
hole doping (n/ng = £1.6)
(top and bottom panels,
respectively) in a super-
lattice device with a =
13.6 nm. Black dots and
curves: o,, calculated in
the constant-t approxi-
mation for different p and
g. Inset image: BZ mini-
bands e(f() inside the first
Brillouin zones indicated
by the gray hexagons
(their size decreases with
increasing ). The mini-
bands were calculated for
a generic graphene-on-
hBN superlattice (29)
and correspond to
broadened LLs (for
example, LLs are 2 and 3
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for g = 2 and range from 3 to 8 for g = 5). Only those minibands at energies relevant to the doping
level on the experimental curves are shown.
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High-order fractal states in graphene superlattices

R. Krishna Kumar®®, A. Mishchenko®®, X. Chen®, S. Pezzini%, G. H. Auton®, L. A. Ponomarenko®, U. ZeitlerS, L. Eaves™®,
V. l. Fal’ko®®’, and A. K. Geim®®"’

3School of Physics & Astronomy, University of Manchester, M13 9PL Manchester, United Kingdom; "National Graphene Institute, University of Manchester,
M13 9PL Manchester, United Kingdom; “High Field Magnet Laboratory, Radboud University, 6525 ED Nijmegen, The Netherlands; “Department of Physics,
University of Lancaster, LA1 4YW Lancaster, United Kingdom; and “School of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham,

United Kingdom

Contributed by A. K. Geim, April 11, 2018 (sent for review March 16, 2018; reviewed by Allan H. MacDonald and Barbaros Oezyilmaz)
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Long-range ballistic transport of Brown-Zak

fermions in graphene superlattices

Julien Barrier 1'2'5, Piranavan Kumaravadivel® 2>, Roshan Krishna Kumar"2, L. A. Ponomarenko"3, Na Xin1'2,
Matthew Holwill® 2, Ciaran Mullan@ ', Minsoo Kim® 1, R. V. Gorbachev® "2, M. D. Thompson® 3,
J.R. Prance® 3T, Taniguchi® c Watanabe 4, I. V. Grigorieva(® 1'2, K. S. Novoselov'?, A. Mishchenko® 1'2,

V. l. Fal'ko® "2, A. K. Geim® 2™ & A. |. Berdyugin® 2™

In quantizing magnetic fields, graphene superlattices exhibit a complex fractal spectrum often
referred to as the Hofstadter butterfly. It can be viewed as a collection of Landau levels that
arise from quantization of Brown-Zak minibands recurring at rational (p/q) fractions of the
magnetic flux quantum per superlattice unit cell. Here we show that, in graphene-on-boron-
nitride superlattices, Brown-Zak fermions can exhibit mobilities above 106 cm2V—1s-1 and
the mean free path exceeding several micrometers. The exceptional quality of our devices
allows us to show that Brown-Zak minibands are 4q times degenerate and all the degen-
eracies (spin, valley and mini-valley) can be lifted by exchange interactions below 1K. We
also found negative bend resistance at 1/q fractions for electrical probes placed as far as
several micrometers apart. The latter observation highlights the fact that Brown-Zak fermions
are Bloch quasiparticles propagating in high fields along straight trajectories, just like elec-
trons in zero field.
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[s this the most appropriate picture?



[17 J.VuCiGevi¢ and R. Zitko, “Universal magnetic oscillations of dc conductivity in the
incoherent regime of correlated systems,” Phys. Rev. Lett. 127, 196601 (2021).

[2] J.VuGiBevi¢ and R. Zitko, “Electrical conductivity in the Hubbard model: Orbital
effects of magnetic field,” Phys. Rev.B 104,205101 (2021).

|. Establish formalism for computing 6" and 6" for Hubbard model
on 2D square lattice using the DMFT at arbitrary temperature T,
magnetic field B, and electron density n

2. Generalization and real-space formulation of the "Khurana
argument": absence of vertex corrections (in DMFT) for ¢** and o™

3. Comprehensive data for ¢ in all regimes

4. Observation of SdH and BZ oscillations

5. Explain BZ oscillations as non-elastic processes which change the
magnetic quantum number:

BZ oscillations are "activated by incoherence”
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periodic magnetic cells for rational p/q flux

B.a®) =272 =22~
h q L

Hyin = —t E £ 2T e‘c]r sCri+u0 +H.c.

i,uci{e, e }.o

= _2t ZCOS k_x-nk,o- — 1 Ze‘k C:; O'Ck 2 2 et o + H.C.

k. €[0,2m/q) Cklo = Ck=k+iZe,o0 l €0, q)

(I: quantum number associated with the q sites of the magnetic unit cell)

eigenvectors contain detailed
information about the orbital effects

/ of the field on electrons

k l.o Z[ak o li,mC k m.o eigenbasis (m: seniority)



= —ifi; Gauge invariant Green's function:
G.. = e Vi@, .
ij.o (2) ij.0 (2) preserves the full symmetry of the lattice

2 ( Z) =Y ( Z) o e—ii' (In PRB we give perturbative proof for the case

of local density-density interactions.)

DMEFT (dynamical mean-field theory) approximation: X is local.
Using gauge invariant objects, the DMFT construction proceeds without modification!

G(z) = [Thz — Hy[A] — IZ™(z)] "

2:cr.ij — 6ij2-0' — (l:(a o, m|Z|R’, g, m,> — 6f(}(f8m.m’ I

Gf(,m,m’,a (Z) v— 8mm’ Gf('mmﬂ (Z)

DOS including the Peierls-phase effects

Po(€)
hz — & — 25(2)

Giis(2) = fds

Acheche, Arsenault, Trembley, PRB (2017)



the vector potential due to electrical field

E = 9,A* is a small long-wavelength correction to the
vector potential due to magnetic field
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The sheet conductance is related to the current-current
correlation function through

o™ (v) = AT _i‘/:m =9 (69)

The z-axis lattice constant ¢ cancels out ¢ from veey = a*c and
its value is irrelevant. In the following we will discard the dif-
ference between the sheet conductance and the conductivity,
and refer to o as conductivity, even though it is actually sheet
conductance and the units of the two quantities are different
[(2m)~! vs Q7!, respectively]; this is common practice in the

field.
s 7e 1 /o .

Rea“;i’g'sc(v = Z/defde (e, ¢ )/da) longitudinal

conductivity
x ImG(e, w)ImG(e', w)np(w), (70)
np(w) = —Bhe?™ /(1 + )
RCO‘x‘ dlsc(v - 0)
Hall

= —1*— — Zfdsfde Imv;’ (e, & )/dw/dw conductivity

ng(w) — np(w’)

x ImG(e, w)ImG(e', )
(w — w')?

(71)

See also Markov, Rohringer, Rubtsov, PRB 2019



Vertex correction cancellation for any gauge choice,
for all components of j-j tensor

generic DMFT
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real-space version of Khurana argument

See also Markov, Rohringer, Rubtsov, PRB 2019



At low temperature we recover the conventional results:
SdH oscillations with an amplitude that
decays with increasing T according to
the standard Lifshitz-Kosevich theory:.

I. M. Lifshitz and A. M. Kosevich, Zh. Eksp. Teor. Fiz. 29, 730 (1956); [Sov. Phys. JETP 2, 636 (1956)].

D. Schoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, England, 1984).



U=1D, n=0.85, T=0.05D/kg, L =997

universal frequency:
depends only on unit cell size

—— 3=13(B,), fixed (n)
>=3(B,=0), fixed (n)
—— 3$=3(B,=0), fixed u=pu(B,=0)

1/0*(v=0) [h/e?]

101 E ;
100 -
10-1 - P _(ng) —— —ImI(w=0) [D] doping-dependent
: d : —IMGjoc(w =0) [D~!] frequency
10-2 - /_\/
0.00 O.b5 0.110 0.115 O.IZO 0.125 0.130 0.35

P/C] ~ Bz
High-T: oscillations in conductivity have different frequency that those in the spectral function and scattering time!

At high enough T, it is a good approximation to use the B=0 self-energy to calculate the transport properties.
Oscillations not due to details in 2, but due to the B-dependence of the velocity vertex!
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Crossover: SdH oscillations at low T, coexistence, BZ oscillations at high T.
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finite-lifetime approximation
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diamonds). At low U, the lower cutoff T for BZ oscillations
is also in agreement with FLA. However, at high U, the
discrepancy from FLA is significant: the sinusoidal BZ
oscillations appear at much lower 7' than one would expect
based on a simple FLA toy model where £ has no
frequency dependence. At very strong U, there rather
seems to be a well-defined lower cutoff I" for regular BZ
QOs extending to very low T (this lower I cutoff being a bit
higher than the one at high 7). The observation of BZ
oscillations at very low T is therefore a clear indication of
strong electronic correlations that go beyond simple inco-
herence effects.

DMFT results:

high-T boundary
for all oscillations

’ BZ dominant

I BZ low-T boundary




CONCLUSION
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