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Hubbard model vs. holography

H=−t∑⟨ij ⟩;σ
c iσ
+ c jσ+h.c.+U∑i

ni↑n i↓

U(1)-charged electrons, 
pairwise interactions

No Hamiltonian known
SU(N)-charged bosons and 
fermions in the large-N limit

● At first glance rather hopeless and poorly motivated

● Beware of large N pathologies



  

Hubbard model vs. holography
● Holographic SU(N) Bose-Hubbard model constructed in 

1411.7899 (Fujita, Harrison, Karch, Meyer & Paquette 2014)

● Idea: quiver gauge theory on                                                
hard-wall AdS provides a                                                         
microscopic dual of the                                                            
Hubbard lattice

● Our idea: brute force search of bottom-up effective 
holographic theories 

Rene Meyer Andreas Karch



  

The roadmap
● Empirical motivation:

● Our idea: brute force search in the  parameter space of a 
phenomenological (bottom-up) Einstein-Maxwell-dilaton 
model

● The citerion: spectral function in Matsubara frequencies

Some of the bottom-up holographic spectra look 
very much like the Hubbard model Quantum Monte 

Carlo results! It's worth trying!
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The holographic model
● Einstein-Maxwell-dilaton + 2D "ionic lattice" 

Ionic square lattice: modulating chemical potential

● Dynamical UV cutoff: impose the ARPES sum rules through a 
frequency-dependent "double-trace" deformation

● Bulk dipole coupling to electric field

Effectively shifts momentum and mimics a gap

S=∫ d4 x √−g [R−(∇ϕ )2−
Z (ϕ)

4
F2−V (ϕ)]

(DμΓ
μ−m−ipFμνΓ

μν )Ψ=0

μ(x , y )=A t (AdS bnd)=μ0+δμcos π x cos π y



  

EMD action
● Einstein-Maxwell-dilaton + 2D "ionic lattice"

● Potentials from Iizuka et al 2011 [1105.1162], a special case 
of effective holographic theories [1005.4690, 1107.2116] by 
Kiritsis, Gouteraux, Meyer...

● Weak lattices – good control, solution for Hubbard:

● Strong lattices – exciting phenomenology but more work is 
needed!

E

Z (ϕ)=cosh (2αϕ) , V (ϕ)=2V 0 cosh ( 2δ ϕ)

S=∫ d4 x √−g [R−(∇ϕ )2−
Z (ϕ)

4
F2−V (ϕ)]

μ(x , y )=A t (AdS bnd)=μ0+δμcos π x cos π y , δμ/μ0≤1

μ(x , y )=A t (AdS bnd)=μ0+δμcos π x cos π y , δμ/μ0>1



  

Corrugated EMD black hole

AdS asymptotics 
near the boundary

Zero-T horizon

● Collocation 3D grid solver with Gauss-Lobato basis in z and 
Fourier basis in x,y + Broyden's iterative nonlinear solver (e.g. 
book by John Boyd; notes by Krikun [1801.01483]



  

Dynamical cutoff
● ARPES sum rules violated by holographic spectral functions – 

UV is determined by conformal dimension

● Idea: double-trace deformation with       -dependent source 
(Gursoy et al 1112.5074)

● Holographic realization: obtain the source as the Green 
function of another holographic fermion in hard-wall AdS (see 
also Fujita et al 0810.5394)

● Requires alternative quantization so we need 

G(ω , k )∼ω2Δ

ω

−1 /2<m<1/2

~GR(ω ,k)=(ghard wall (ω , k )−GR (ω ,k ) )
−1



  

The algorithm

(1) compute a            grid of holographic lattice backgrounds

(2) compute (real-frequency) EDCs for a range of conformal 
dimensions        for each background

(3) translate the holographic EDCs into Matsubara frequencies

(4) do a grid search in                 for the best fit to the CTINT 
Hubbard model Matsubara EDCs with the merit function:

● similar results for 

● (5) repeat for several temperatures and densities

(α ,δ)

M d≡
1

N d ∑n , j
|GAdS (iωn; k j )−GCTINT (iωn ;k j )|

d
=min

d=−2,−1,+1,+2

Δ

(α ,δ ;Δ)



  

Minimizing the merit function

Global minimum of       – the solution M 2

lo
g
M

2



  

And the outcome is ...

ReG(iωn , k) ImG( iωn ,k)

T=0.70

M 1(iωn ,k )

Solution:                                    , here for   α=−1.8, δ=1.0, Δ=1.2

Legend

 color k

(0,0)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(π ,π)

iωn iωn



  

And the outcome is ...

ReG(iωn , k) ImG( iωn ,k)

T=0.50

M 1(iωn ,k )

Solution:                                    , here for   α=−1.8, δ=1.0, Δ=1.2

Legend

 color k

(0,0)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(π ,π)

iωn iωn



  

And the outcome is ...

ReG(iωn , k) ImG( iωn ,k)

T=0.30

M 1(iωn ,k )

Solution:                                    , here for   α=−1.8, δ=1.0, Δ=1.2

Legend

 color k

(0,0)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(π ,π)

iωn iωn



  

Real-frequency spectra

Legend

 color k

(0,0)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(π ,π)

Same parameters as before @

ω

T=0.50

Broad peak, 
not really a 
quasiparticle

Well-separated 
Hubbard bands

This is the Fermi-liquid-like 
phase with well-defined QP 

A
(ω

,k
)



  

The beauty of holography: real-
frequency spectra @low T

ω ω
lo

g
A
(ω

,k
)

1/ω

Key points:

1) very sharp 
quasiparticle at 
low temperature

2) exponentially 
narrow peaks

3) compare to 
Iizuka et al self-
energies

Zoom-in at 
small ω

A
(ω

,k
)

log A (ω)∝1/(ω+a0)

Zoom-in 
linearizedl

T=0.05



  

Local spectral function

ω

N
(ω
)

T=0.50

ω

T=0.05

N
(ω
)

Three-peak structure

Clear separation between 
the low-energy and high-

energy spectrum

A signature of Mottness?

The puzzle: no sign of gap at 
half-filling. Strange but not 

totally inconsistent with QMC 
data 



  

Spectral map in (,k) plane

Broad peak

Hubbard bands

T=0.50, n=0.425⇒μ=2.50



  

The beauty of holography: spectral 
map in (,k) plane @low T

Hubbard bands plus a 
very sharp quasiparticle 

T=0.05, n=0.425⇒μ=2.50

Something is happening 
at k=(π , π)
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Holography lite 1: semiholographic 
lattice

● The idea by Polchinski and Faulkner 2011, applied in several 
contexts so far, e.g. recent study of momentum-dependent 
scaling exponents [2112.06576]

● Couple the holographic propagator in the plane to a free 
lattice fermion:

● Uncontrolled but should capture the IR behavior

~GR(ω ,k)=(ω−cos (ak x )−cos (ak y )−GR (ω , k ) )
−1



  

Holography lite 1: semiholographic 
lattice

Quasiparticle present but 
no clearly separated bands

But this is mainly from the 
lack of dipole coupling!

● The simplest possible model – no anisotropy at all in AdS 
calculations



  

Holography lite 2: multipole 
expansion

● Holographic lattice but avoid solving the PDEs

● Expand the stress tensor and separate the variables

No dipole coupling 
Quasiparticle almost 
disappears around  k=(π , π)



  

Holography lite 2: multipole 
expansion - NO dipole coupling
ReG(iωn , k) ImG( iωn ,k)

iωn

M 1(iωn ,k )

Legend

 color

iωn

k

(π ,π)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(0,0)

α=−2.0, δ=1.0, Δ=1.3

T=0.50



  

Holography lite 2: multipole 
expansion WITH dipole coupling

iωn

M 1(iωn ,k )

Legend

 color

iωn

k

(π ,π)

(π/2,0)

(π/2,π /2)

(π ,0)

(π ,π/2)

(0,0)

ReG(iωn , k) ImG( iωn ,k) α=−2.0, δ=1.0, Δ=1.2

T=0.50
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How seriously are we to take this?

● Matsubara EDCs of CTINT Hubbard model well-described by 
holographic EDCs in EMD background

● Real-frequency spectra overall look as expected but a few 
surprises are there: no gap even @low T at half-filling, 
pecular behavior for  k=(π , π)
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● Just a good fit or something deeper?

● Is it time for holographers to tackle microscopic models 
in a controlled way?



  

How seriously are we to take this?

● Just a good fit or something deeper?

● Is it time for holographers to tackle microscopic models 
in a controlled way?

● To do's:

● IR analysis a la Hong Liu (on the lattice)  – can we say 
something about the T=0 behavior of the Hubbard model?

● Strong lattice regime (work in progress by Filip&Vladan)

● Transport properties & relation to experiment
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