Spectral functions in holographic lattices and the Hubbard model

Mihailo Čubrović CIKS, Institute of Physics Belgrade, Serbia

with

Filip Herček

PMF Novi Sad

Vladan Gecin FF Belgrade

SCIENTIFIC COMPUTING

Key2SM

Jakša Vučičević CIKS, IPB, Belgrade

Outline

Why Hubbard model?!

The basic holographic model: spectral functions and the fit to the spectral functions of the Hubbard model

Variations of the model and universality

What have we learned?

Outline

Why Hubbard model?!

The basic holographic model: spectral functions and the fit to the spectral functions of the Hubbard model

Variations of the model and universality

What have we learned?

Hubbard model vs. holography

 $H = -t \sum_{\langle ij \rangle;\sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \text{h.c.} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$ U(1)-charged electrons, pairwise interactions

No Hamiltonian known SU(N)-charged bosons and fermions in the large-N limit

At first glance rather hopeless and poorly motivated Beware of large N pathologies

Hubbard model vs. holography

Holographic SU(N) Bose-Hubbard model constructed in 1411.7899 (Fujita, Harrison, Karch, Meyer & Paquette 2014)

Idea: quiver gauge theory on hard-wall AdS provides a microscopic dual of the Hubbard lattice

Rene Meyer

Andreas Karch

Our idea: brute force search of bottom-up effective holographic theories

The roadmap

Empirical motivation:

Some of the bottom-up holographic spectra look very much like the Hubbard model Quantum Monte Carlo results! It's worth trying!

Our idea: brute force search in the parameter space of a phenomenological (bottom-up) Einstein-Maxwell-dilaton model

The citerion: spectral function in Matsubara frequencies

Outline

Why Hubbard model?!

The basic holographic model: spectral functions and the fit to the spectral functions of the Hubbard model

Variations of the model and universality

What have we learned?

The holographic model

Einstein-Maxwell-dilaton + 2D "ionic lattice"

$$S = \int d^4 x \sqrt{-g} \left| R - (\nabla \varphi)^2 - \frac{Z(\varphi)}{4} F^2 - V(\varphi) \right|$$

Ionic square lattice: modulating chemical potential $\mu(x,y) = A_t (AdS bnd) = \mu_0 + \delta \mu \cos \pi x \cos \pi y$

- Dynamical UV cutoff: impose the ARPES sum rules through a frequency-dependent "double-trace" deformation
- Bulk dipole coupling to electric field

 $\left(D_{\mu}\Gamma^{\mu}-m+ipF_{\mu\nu}\Gamma^{\mu\nu}\right)\Psi=0$

Effectively shifts momentum and mimics a gap

EMD action

Einstein-Maxwell-dilaton + 2D "ionic lattice"

$$S = \int d^4 x \sqrt{-g} \left| R - (\nabla \varphi)^2 - \frac{Z(\varphi)}{4} F^2 - V(\varphi) \right|$$

 $Z(\varphi) = \cosh(2\alpha\varphi), \quad V(\varphi) = 2V_0\cosh(2\delta\varphi)$

Potentials from lizuka et al 2011 [1105.1162], a special case of effective holographic theories [1005.4690, 1107.2116] by Kiritsis, Gouteraux, Meyer...

Weak lattices – good control, solution for Hubbard:

 $\mu(x, y) = A_t (\text{AdS bnd}) = \mu_0 + \delta \mu \cos \pi x \cos \pi y, \quad \delta \mu / \mu_0 \le 1$

Strong lattices – exciting phenomenology but more work is needed!

 $\mu(x, y) = A_t (\text{AdS bnd}) = \mu_0 + \delta \mu \cos \pi x \cos \pi y, \quad \delta \mu / \mu_0 > 1$

Corrugated EMD black hole

AdS asymptotics near the boundary

Zero-T horizon

Collocation 3D grid solver with Gauss-Lobato basis in z and Fourier basis in x,y + Broyden's iterative nonlinear solver (e.g. book by John Boyd; notes by Krikun [1801.01483]

Dynamical cutoff

ARPES sum rules violated by holographic spectral functions -UV is determined by conformal dimension $G(\omega,k) \sim \omega^{2\Delta}$

Idea: double-trace deformation with Odependent source (Gursoy et al 1112.5074)

Holographic realization: obtain the source as the Green function of another holographic fermion in hard-wall AdS (see also Fujita et al 0810.5394)

 $\widetilde{G}_{R}(\omega, \boldsymbol{k}) = (\boldsymbol{g}_{\text{hard wall}}(\omega, \boldsymbol{k}) - \boldsymbol{G}_{R}(\omega, \boldsymbol{k}))^{-1}$

Requires alternative quantization so we need -1/2 < m < 1/2

The algorithm

(1) compute a (α, δ) grid of holographic lattice backgrounds (2) compute (real-frequency) EDCs for a range of conformal dimensions Λ for each background

(3) translate the holographic EDCs into Matsubara frequencies

(4) do a grid search in $(\alpha, \delta; \Delta)$ for the best fit to the CTINT Hubbard model Matsubara EDCs with the merit function:

$$M_{d} \equiv \frac{1}{N^{d}} \sum_{n,j} |G_{AdS}(i\omega_{n}; \boldsymbol{k}_{j}) - G_{CTINT}(i\omega_{n}; \boldsymbol{k}_{j})|^{d} = \min$$

similar results for d = -2, -1, +1, +2

(5) repeat for several temperatures and densities

Minimizing the merit function

Global minimum of M_2 – the solution

Real-frequency spectra

Same parameters as before (a) T=0.50

Broad peak, not really a quasiparticle

> Well-separated Hubbard bands

This is the Fermi-liquid-like phase with well-defined QP

Legend color k (0,0) $(\pi/2,0)$ $(\pi/2,\pi/2)$ $(\pi, 0)$ (π,π/2) (π,π)

The beauty of holography: realfrequency spectra @low T

 (\mathbf{I})

×

З

 \checkmark

Zoom-in at small

Key points:

1) very sharp quasiparticle at low temperature

T = 0.05

2) exponentially narrow peaks $\log A(\omega) \propto 1/(\omega + a_0)$

3) compare to lizuka et al selfenergies Zoom-in linearizedl

 $1/\omega$

Local spectral function

З

N

Three-peak structure Clear separation between the low-energy and highenergy spectrum

A signature of Mottness?

The puzzle: no sign of gap at half-filling. Strange but not totally inconsistent with QMC data

Spectral map in (ω, \mathbf{k}) plane

The beauty of holography: spectral map in (ω,k) plane @low T

Outline

Why Hubbard model?!

The basic holographic model: spectral functions and the fit to the spectral functions of the Hubbard model

Variations of the model and universality

What have we learned?

Holography lite 1: semiholographic lattice

The idea by Polchinski and Faulkner 2011, applied in several contexts so far, e.g. recent study of momentum-dependent scaling exponents [2112.06576]

Couple the holographic propagator in the plane to a free lattice fermion:

 $\widetilde{G}_{R}(\omega, \mathbf{k}) = (\omega - \cos(ak_{x}) - \cos(ak_{y}) - G_{R}(\omega, \mathbf{k}))^{-1}$

Uncontrolled but should capture the IR behavior

Holography lite 1: semiholographic lattice

The simplest possible model – no anisotropy at all in AdS calculations

Quasiparticle present but no clearly separated bands

But this is mainly from the lack of dipole coupling!

Holography lite 2: multipole expansion

Holographic lattice but avoid solving the PDEs

Expand the stress tensor and separate the variables

Holography lite 2: multipole expansion - NO dipole coupling

Holography lite 2: multipole expansion WITH dipole coupling

Outline

Why Hubbard model?!

The basic holographic model: spectral functions and the fit to the spectral functions of the Hubbard model

Variations of the model and universality

What have we learned?

How seriously are we to take this?

Matsubara EDCs of CTINT Hubbard model well-described by holographic EDCs in EMD background

Real-frequency spectra overall look as expected but a few surprises are there: no gap even @low T at half-filling, pecular behavior for $k = (\pi, \pi)$

How seriously are we to take this?

Just a good fit or something deeper?

Is it time for holographers to tackle microscopic models in a controlled way?

How seriously are we to take this?

Just a good fit or something deeper?

Is it time for holographers to tackle microscopic models in a controlled way?

<u>To do's:</u>

IR analysis a la Hong Liu (on the lattice) – can we say something about the T=0 behavior of the Hubbard model? Strong lattice regime (work in progress by Filip&Vladan) Transport properties & relation to experiment