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Spontaneous breaking of translations across the phase diagram of
cuprates and other strange metals: various shades of incommensurate
charge density waves.

Expected on theoretical
grounds since early days [Zaanen

& Gunnarson, PRB’89], [Machida, Phys.

C: Superconductivity’89], arguments
for electronic liquid crystal
phases in doped Mott
insulators [Kivelson et al, Nature’98].
Doped holographic Mott
insulators [Andrade et al, Nat.

Phys.’18].
Credit: [Frano et al, arXiv: 2102.09525]

Well-established in underdoped cuprates [Tranquada et al, Nature’95].

More recent discovery on the overdoped side [Arpaia et al, Science’19],
see [Arpaia and Ghiringhelli, J. Phys. Soc. Jpn.’21] for a review.
Magnetism all the way to the pseudogap critical point, [Frachet et al.,

Nat. Phys. ‘20]3
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Weakly-coupled, quasi-particle based mechanism in quasi one-dimensional
materials: Peierls instability, [Grüner, RMP’88].

Gap opens, modulated
density of states energetically
favored

ρ(x) = ρ0+δρ cos(kcdw x+φx )

φx : Goldstone mode
(‘phason’) of spontaneously
broken translations.

Credit [Grüner, RMP’88]
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Low frequencies, weak disorder: pseudo-Goldstone mode

f = · · · + κ

2 (∂x φx )2 + κ

2 m2
φ (φx )2

Relaxed dynamics for φx :

∂2
t φx + Γ ∂tφ

x + ω2
o φx = 0

Weak disorder: Γ, ωo ≪ ∆ the single
particle gap ⇒ pseudo-Goldstone
remains light.

CDW is pinned [Grüner, RMP’88]

σ(ω) =
(

ne2

m⋆

)
−iω

−iω(Γ − iω) + ω2
o

Γ : momentum relaxation
rate.
ω2

o ≡ κ m2
φ /(m⋆n):

pinning frequency.

Credit: adapted from [Grüner, RMP’88]

Transfer of spectral weight. Pinning short-circuits the DC conductivity:
insulator. Gap = no available relaxational channel for the Goldstone.
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This mechanism requires (quasi) one-dimensional Fermi surfaces
with weakly-coupled quasiparticles, and typically does apply in many
strongly-correlated materials.

Instead, Mott physics, anti-ferromagnetic fluctuations, etc. No hard
gap: gapless low-energy excitations on top of the Goldstone
mode.

Rather than focusing on a specific material, I want to investigate on
general grounds charge transport in pinned, gapless,
strongly-correlated charge density wave states (see [S. Krikun’s

talk] for thermoelectric effects).
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Strong correlations imply short equilibration scales τeq ∼ 1/T
(‘Planckian’? See [R. Davison’s talk] for a holographic illustration of
this), which justify the use of effective field theory methods for the
low-energy dynamics.

EFTs rely on the symmetries of the system ⇒ conservation
equations

∂tn + ∂i j i = 0

and on an expansion in gradients τeq∂t ≪ 1, ℓth∂x ≪ 1 ⇒
constitutive relations for vevs of currents in the thermal
equilibrium state.
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The main result is that compared to [Grüner, RMP’88] an extra
transport coefficient is needed, which governs the (inverse)
lifetime of the pseudo-Goldstone.

It is fixed by its mass and a diffusivity that characterizes sound
attenuation in the clean system (no disorder)

Ω = m2
φDφ

It is a direct consequence of the existence of a bath of thermal
excitations, into which the Goldstone can relax.
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EFTs are built starting from symmetries: tricky to write them when
symmetries are approximate. In fact we missed this coefficient
when we wrote an EFT for pinned CDWs, [Delacrétaz et al, PRB’17].

The need for this relaxed transport coefficient Ω was made obvious
when we tried to check the EFT using holographic methods
[Amoretti et al, PRL’19] (see also [Donos et al, JHEP’19], [Donos et al,

Class.Quant.Grav.’20], [Andrade et al, JHEP’21]).

We then went back to the EFT and showed it follows from
consistency of coupling the static partition function to
external sources, [Delacrétaz et al, PRL’22] (also shown to follow from
positivity of entropy production, [Armas et al, arXiv: 2112.14373]).† Not
an artifact of large N or of specific holographic setups!

†In [Armas et al, arXiv: 2112.14373], other transport coefficients are also derived, but
appear to renormalize static susceptibilities and so play a less dominant role for the
purposes of this talk.
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The AC conductivity has a more complicated ω dependence:

σ(ω) =
(

ne2

m⋆

)
Ω − iω

(Ω − iω)(Γ − iω) + ω2
o

Drude peak if ωo sufficiently small compared to Ω.

Nonzero dc resistivity:

ρdc = m⋆

ne2

(
Γ + ω2

o
Ω

)
= m⋆

ne2

(
Γ + v2

Dφ

)
, v2 = κ

m⋆n

The second term is independent on the strength of
disorder/explicit translation symmetry breaking to leading order.

Reminiscent of an Einstein relation, as here the thermal diffusivity:

DT ∼ Dφ
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The holographic result for the AC conductivity in a phase that breaks
translations pseudo-spontaneously matches the EFT prediction extremely
well.†

†Accounting for the underlying Lorentz invariance of the holographic system, etc.
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The resistivity dominated by the pseudo-Goldstone contribution†

ρdc ≃ m⋆

ne2
ω2

o
Ω

Dφ controlled by horizon quantities, [Amoretti et al, JHEP’19]: the Goldstone
couples to the black hole horizon, which provides the bath of thermal
excitations into which it relaxes. ‘holographic black hole membrane
paradigm’ [Iqbal & Liu, Phys.Rev.D’09], [Donos & Gauntlett, JHEP’14].
† Accounting for the underlying Lorentz invariance of the holographic system, etc.
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In strongly-correlated materials, generally expect diffusivities to
saturate a lower bound [Kovtun, Son & Starinets, PRL’05], [Hartnoll, Nat.

Phys.’14]

D ≳
ℏv2

kBT
Eg thermal diffusivity in the strange metal regime [Zhang et al, PNAS’17].
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Yields a T -linear resistivity, slope independent on the strength of
disorder/explicit translation symmetry breaking to leading order

Dφ ≃ ℏv2

kBT , ρdc ≃ m⋆

ne2
v2

Dφ
+ O(Γ) ∼ T

Credit: [Rullier-Albenque et al, Eur.Phys.Lett’00] Credit: [Walker et al, Phys Rev B’94]
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Emphasis on the independence of the slope on disorder: same slope for
across different overdoped cuprates, in spite of varying degree of disorder

Extract the T -linear
component of the resistivity

ρ ≃ ρ0+A1T+. . . , A□
1 = A1/d

ρ ≃ m⋆

ne2τ
, τ = ℏ

αkBT

A□
1 = α

h
2e2

1
TF

, Tf = πℏ2

kB

nd
m⋆

If we had a simple Drude
model, expect that 1/τ ∼ g2,
highly dependent on the
strength of disorder. Credit: [Legros et al, Nat. Phys.’19]
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Two distinct temperature dependencies in transport [Cooper et al

Science’09], [Putzke et al Nature Physics’21], [Ayres et al arXiv: 2012.01208]

Dφ ∼ v2ℏ
αkBT , Γ ∼ γ0+γ2T 2 ⇒ ρdc ∼ m⋆

ne2

(
γ0 + kBα

ℏ
T + γ2T 2

)

Credit:[Cooper et al Science’09]
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Upon increasing disorder, the
Drude peak in the strange metal
regime is transfered to nonzero
frequencies in He-irradiated
YBa2Cu3O6.95.

Reproduced by the EFT prediction
for the ac conductivity when
pinning ωo is stronger than
damping Ω

σ(ω) =
(

ne2

m⋆

)
Ω − iω

(Ω − iω)(Γ − iω) + ω2
o

Same transfer of spectral weight
observed in the strange metal
regime as T increases [Hussey et al,

Philos. Mag.’04], [Delacrétaz et al, SciPost

Phys.’17]: consistent with
Ω ∼ ω2

oDφ ∼ ω2
o/T . [Basov et al, Phys Rev B’94]
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EFTs and holographic methods used in conjunction to arrive at
general statements on transport in strongly-correlated phases of
quantum matter.

Example from charge transport in pinned, gapless charge density
wave phases: nonzero resistivity from relaxation of
pseudo-Goldstone into bath of thermal excitation

Ω = m2
φDφ

In holography, Dφ is controlled by the black hole horizon.

Appealing features for charge transport in cuprate strange metals.
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THANKS!
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