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Motivation

• At strong coupling often no quasiparticles


• Conserved charges and light Goldstone modes can dominate at long wavelengths


• Correlation length diverges during a transition


• Use holography to carry out microscopic computations



(Conformal) Field Theory Setup

• Relativistic field theory (with global ) at finite  and zero charge


• Charged operator   transforms as 


•  Phase transition with  at 


• Couple to perturbative external gauge field  and scalar source 

U(1) T

𝒪ψ 𝒪ψ → e−iqα 𝒪ψ

⟨𝒪ψ⟩ ≠ 0 T < Tc

Aμ λψ

δS = ∫ dnx (Jμ δAμ + 𝒪*ψ δλ + 𝒪ψ δλ*)



Finite Temperature

• Generating function  depends on external gauge field  and complex 
source 


• Functional differentiation gives the VEVs

W[Aμ, λ, λ*] Aμ

λ

⟨Jμ⟩ = i
δW
δAμ

, ⟨𝒪ψ⟩ = i
δW
δλ*

• Invariance under gauge transformations   yields the 
current (non)-conservation Ward identity

δAμ → ∂μδΛ, δλ = − i q λ δΛ

∇α⟨Jα⟩ = iq (⟨𝒪ψ⟩λ* − ⟨𝒪*ψ⟩λ)
• Invariance under coordinates transformations yields the stress tensor Ward identity

∇μ⟨Tμν⟩ = Fνμ ⟨Jμ⟩ + ∇νλ ⟨𝒪*ψ⟩ + ∇νλ* ⟨𝒪ψ⟩



Ginzburg - Landau

• Write leading order terms for free energy  in terms of the order parameter 


• Minimise free energy at equilibrium


‣  when 


‣  when 


‣ Second order transition  

F[ψ] ψ

ψ = 0 T > Tc

|ψ |2 = −
Tcα
b′￼

(1 − T/Tc) T < Tc

ΔF/vol = −
α2

2b′￼

(T − Tc)2

F[ψ] = ∫ d3x ( ℏ2

2m(T)
| ⃗∇ ψ |2 + a′￼(T) |ψ |2 +

b′￼(T)
2

|ψ |4 ) + Fn(T, …)

m(T) = m + ⋯ a′￼(T) = Tc α (1 − T/Tc) + ⋯b′￼(T) = b′￼+ ⋯

Tc

|ψ |



Ginzburg - Landau

F[ψ] = ∫ d3x ( ℏ2

2m(T)
| ⃗∇ ψ |2 + a′￼(T) |ψ |2 +

b′￼(T)
2

|ψ |4 ) + Fn(T, …)

m(T) = m + ⋯ a′￼(T) = Tc α (1 − T/Tc) + ⋯b′￼(T) = b′￼+ ⋯

Tc

|ψ |

• Extremisation does not fix the phase  of 


‣ Goldstone mode due to spontaneous  symmetry breaking

• When slightly off equilibrium order parameter governed by

ϑ ψ

U(1)

∂tψ = − Γ
δF
δψ*

+ thermal noise + sources

‣ Simple gapped pole related to amplitude of order parameter with ωrel ∝ Tc − T

Halperin, Hohenberg



Hydrodynamics at T ≪ Tc

Parametrise massless collective dof:


• Normal fluid parametrised by local temperature  and fluid velocity 


• Superfluid parametrised by phase  of vev 


• Express  and  as functions of the fluctuations  


• Solve the closed system

T vμ

ϑ ⟨𝒪ψ⟩ = ⟨𝒪ψ⟩b eiϑ

Tμν Jμ T, vμ, vμ
s = ∂μϑ

∇α⟨Jα⟩ = iq (⟨𝒪ψ⟩λ* − ⟨𝒪*ψ⟩λ)

∇μ⟨Tμν⟩ = Fνμ ⟨Jμ⟩ + ∇νλ ⟨𝒪*ψ⟩ + ∇νλ* ⟨𝒪ψ⟩



Hydrodynamics at T < Tc

• At  linear response is dominated by hydro poles


• Higgs mode is integrated out


• As  Higgs pole becomes gapless  Transport coefficients blow up


‣ Include Higgs mode in hydro description

T ≪ Tc

T → T−
c →

ℜω

ℑω

T ≪ Tc

ℜω

ℑω

T → T−
c

Hydro poles

Higgs pole



Generalities

• Isolate Higgs mode from rest of hydro fluctuations


• At infinite wavelength Higgs mode decouples from entropy and charge density

∂tδs = 0 ∂tδρ = 0

• Linear response of non-conserved scalar operators




Why holography

• Microscopic derivation  Compute transport coefficients


• Valid away from   Ground states


• Real time dynamics

⇒

Tc ⇒



CFT Setup

Model superfluid transitions:


• CFT with a global  and charged operator 


• Finite temperature  and chemical potential 


• Deform by neutral relevant operator(s)  to introduce additional scale(s) 


• Phase transition at 

U(1) 𝒪ψ

T μ

𝒪ϕ ϕ(s)

Tc = Tc(μ, ϕ(s))



AdS/CFT

ℝ1,d

r

The vacuum of   is modelled by CFT1,d AdSd+2

ds2 = r2 (−dt2 + dx2
d) +

dr2

r2



Holographic Setup

Boundary conditions of bulk fields correspond to sources in CFT:

ds2 = r2 (−dt2 + dx2
d + δgμν(x)dxμdxν) +

dr2

r2
+ ⋯

A = aμ(x) dxμ + ⋯

ϕ(r, x) =
ϕs(x)

rd+1−Δϕ
+ ⋯

• Metric ➜ Source for the stress tensor

• Gauge Field ➜ Source for  currentU(1)

• Massive Scalar ➜ Source for boundary scalar with dimension  Δϕ



Holographic Setup

S[ϕs, aμ, δgμν] = SCFT + ∫ dd+1x (ϕs(x) 𝒪(x) + aμ(x) Jμ(x) +
1
2

δgμν(x)Tμν(x))

• Boundary theory gets deformed to

• Holographic conjecture relates partition functions

ZCFT[ϕs, aμ, δgμν] = Zbulk[ϕs, aμ, δgμν] ≈ eiSbulk[ϕs,aμ,δgμν]

• Powerful tool to extract VEVs of operators

⟨𝒪(x)⟩ =
1
i

δ
δϕs(x)

ln ZCFT[ϕs, aμ, δgμν] ≈
δ

δϕs(x)
Sbulk[ϕs, aμ, δgμν]



Setup
Minimal bulk action includes a complex scalar    and neutral scalar ψ ϕ

ℒ = R − V(ϕ, |ψ |2 ) −
1
2

∂μϕ ∂μϕ −
1
2

(Dμψ)(Dμψ)* −
1
4

τ(ϕ, |ψ |2 ) FμνFμν

V ≈ − 6 +
1
2

m2
ϕ ϕ2 +

1
2

m2
ψ |ψ |2 + ⋯

Dμψ = ∇μψ + i q Aμ ψ

• Invariant under  


• Scenario were we deform by neutral scalar  and  breaks  below 

ψ → e−iqΛ ψ, Aμ → Aμ + ∂μΛ

ϕ ψ U(1) Tc

• UV dimensions  and  of dual operators fixed by  and Δϕ Δψ m2
ϕ m2

ψ



Thermal States

• Introduce planar event horizon at Hawking temperature 


• Fix  and scalar sources  on the boundary


• No source for complex scalar 

T

μ ϕ(s)

ψ

r

At → μ + ⋯

ϕ(r) →
ϕ(s)

r3−Δϕ
+ ⋯ +

ϕ(v)

rΔϕ
+ ⋯

ψ(r) →
0

r3−Δψ
+ ⋯ +

ψ(v)

rΔψ
+ ⋯

T



Phase Diagram

• Black holes parametrised by 


• Consider curve 


• Source free static mode  at 


• Follow instability for    to construct broken phase black holes with 

(T, μ, ϕ(s))

(T(λ), μ(λ), ϕ(s)(λ))

δψc λ = λc

λ < λc ψ ≠ 0

λλc

⟨𝒪⟩
T

ϕ(s)μ

ψ = 0

ψ ≠ 0

Gubser Hartnoll, Herzog, Horowitz



Linear Response

• Introduce perturbative sources scalar  and 


• Read off VEVs  and  from  and 


• Extract retarded Green’s functions


• Study source free Higgs mode

δϕ(s) δψ(s)

δ⟨𝒪ϕ⟩ δ⟨𝒪ψ⟩ δϕ(v) δψ(v)

δϕ(r) →
δϕ(s)

r3−Δϕ
+ ⋯ +

δϕ(v)

rΔϕ
+ ⋯

δψ(r) →
δψ(s)

r3−Δψ
+ ⋯ +

δψ(v)

rΔψ
+ ⋯

Infalling boundary 
conditions



Higgs Mode Construction
• Construct source free Higgs mode


• At  Higgs mode becomes the static mode 


• Natural expansion parameter  with e.g.  

λ = λc δΦ*(0) → δψc

ε = λ − λc ε2 ∝ 1 − T/Tc

δΦ = e−i ω t (δΦ*(0) + ε δΦ(1) + ⋯)

ω = ε ω[0] + ε2 ω[1] + ⋯

• Can show that 


• Goal is to fix 

ω[0] = 0

ω[1]



Higgs Mode Construction

• Expansion of branches around critical point

Φ# = Φc + ε2 δΦ#(1) + ⋯ Φ* = Φc + ε δΦ*(0) + ε2 δΦ*(1) + ⋯

• Equations of motion for Higgs mode solved by setting

δΦ(1) = δΦ*(1) − δΦ#(1)

• Combination of variations so that ,  and δs = 0 δρ = 0 δϕ(s) = 0



Higgs Mode

• Use holographic techniques to show Higgs mode decay rate is

ωdec = −
8 ΔE

ϖ

• Fixed by thermodynamics

ΔE = E*(sc + δs, ρc + δρ, ϕ(s)c + δϕ(s)) − E#(sc + δs, ρc + δρ, ϕ(s)c + δϕ(s))

• And dissipative coefficient fixed at the horizon

ϖ =
s |ψh |2

4π
+

16 π
s q2 |ψh |2 (ρh − ρ)2

Donos, Kailidis, Pantelidou



Green’s Functions

• Follow the same technique to introduce scalar sources  and  


• Read off VEVs to find

δψ(s) ∝ 𝒪(ε2) δϕ(s) ∝ 𝒪(ε)

G𝒪ρ𝒪ρ
(ω) =

(Δ⟨𝒪ψ⟩)2

ϖ (−i ω + ωgap)
G𝒪ϕ𝒪ρ

(ω) = 2
Δ⟨𝒪ψ⟩ Δ⟨𝒪ϕ⟩

ϖ (−i ω + ωgap)

G𝒪ϕ𝒪ϕ
(ω) = 4

(Δ⟨𝒪ϕ⟩)
2

ϖ (−i ω + ωgap)
+ ∂ϕ(s)

⟨𝒪ϕ⟩#
s,ϱ

• With 


• Reminiscent of memory matrix formalism with fixed susceptibilities and gap

Δ⟨𝒪⟩ = ⟨𝒪⟩*(sc + δs, ρc + δρ, ϕ(s)c + δϕ(s)) − ⟨𝒪⟩#(sc + δs, ρc + δρ, ϕ(s)c + δϕ(s))



Conclusions/Outlook

• Holography as a tool to study universal behaviour


• Connect with standard field theory approaches


• Complete set of Green’s functions


• Amplitude modes for broken spacetime symmetries


• Enlarge hydro of broken phase to include amplitude mode

Halperin, Hohenberg Glorioso, Liu

Donos, Gauntlett, Pantelidou


