

## Thermo-electric transport properties in holographic models with pinned charge density waves

#### Alexander Krikun (NORDITA, Stockholm)

Strange metals: from the Hubbard model to AdS/CFT Institute of Physics Belgrade (IPB), online, 25 May'22

#### References

Based on:

## Tomas Andrade, A.K., arXiv:2203.10038

### Outline

- 1. Effective transport in CDW
- 2. Holographic model with pinned CDW
- 3. DC Transport in strong order regime
- 4. Conclusion

#### CDW in cuprates

CDW is a clear part of the cuprate HTSC phase diagram



#### Transport in CDW

It is characterized by some peculiar transport features: The smooth upturn of the resistivity



A. Krikun: Thermo-electric transport properties in holographic models with pinned charge density waves

#### Transport in CDW

It is characterized by some peculiar transport features: Change of sign in the thermopower



a)EuBCO, b)YBCO: Taillefer et al. arXiv:1102.0984 , Nat Commun 2,432 (2011)

# Effective theory of transport in CDW

Let's consider the EFT of a Goldstone mode of the broken translations:

 $\phi(x)$  – a point of CDW located at position x $\phi(x) \rightarrow \phi(x) + \delta \phi$  – a shift of CDW, or redefinition of internal ruler  $\partial_t \phi(x)$  – velocity of CDW at position x



J.Armas, A.Jain 2001.07357, recall also talk by B.Gouteraux

Conservation laws include pinning term  $\Gamma$  and Goldstone mass  $m_{\phi}^2$ 

$$\begin{aligned} \nabla_{\mu} T^{\mu}_{t} &= 0, \\ \nabla_{\mu} J^{\mu} &= 0 \\ \nabla_{\mu} T^{\mu}_{x} &= -\rho \partial_{t} \delta A_{x} + \Gamma T_{tx} - G m_{\phi}^{2} \delta \phi \end{aligned}$$

L. V. Delacrétaz, et al, 1702.05104

The theory can be formulated having arbitrary metric in mind.

crystal metric: 
$$h^{IJ} = g^{\mu\nu}e^I_\mu e^J_\nu, \qquad e^I_\mu \equiv \partial_\mu \phi^I$$
  
strain tensor:  $u_{IJ} = rac{1}{2}(H_{IJ} - h_{IJ})$ 

Constitutive relations involve  $\gamma$  – a contribution of moving CDW to the current. In conventional gapped CDW:  $\sigma_q = 0$ ,  $\xi = 0$ 

$$J^{\mathsf{x}} = \rho \delta u_{\mathsf{x}} + \gamma (\partial_{t} \delta \phi - \delta u_{\mathsf{x}}) - \sigma_{q} \left( T_{0} \partial_{\mathsf{x}} \frac{\mu}{T} + \partial_{t} \delta A_{\mathsf{x}} \right),$$
  
$$T^{\mathsf{x}\mathsf{x}} = P + \left( s \delta T + \rho \delta \mu + (\zeta + \eta) \partial_{\mathsf{x}} \delta u_{\mathsf{x}} - (B + G) \partial_{\mathsf{x}} \delta \phi - 2\eta \partial_{\mathsf{x}} \delta g_{t\mathsf{x}} \right).$$

A decay rate  $\Omega$  must be added to the Josephson relation:

$$\partial_t \delta \phi = \delta u_x + \xi (B + G) \partial_x^2 \delta \phi - \xi \gamma' \left( T_0 \partial_x \frac{\mu}{T} + \partial_t \delta A_x \right) - \Omega \delta \phi.$$

Consistency and locality requires

$$\gamma' = -\gamma, \qquad \Omega = \xi m_{\phi}^2 G.$$

J.Armas, A.Jain 2001.07357, L.V. Delacrétaz, B. Goutéraux, V. Ziogas 2111.13459 also talk by B. Groutéreaux

#### Decay of the Goldstone

Note that  $\xi$  measures the diffusivity of the Goldstone

$$\partial_t \delta \phi = \delta u_x + \boldsymbol{\xi} (B + G) \partial_x^2 \delta \phi - \boldsymbol{\xi} \gamma' \left( T_0 \partial_x \frac{\mu}{T} + \partial_t \delta A_x \right) - \Omega \delta \phi.$$
  
$$\omega(k) = -i\Omega - i\boldsymbol{\xi} (B + G) k^2$$



A. Romero-Bermúdez et al 1812.03968 also Jan's talk

#### Thermo-electric transport

Let us look at full matrix of thermo-electric conductivities

$$\begin{pmatrix} J^{x} \\ Q^{x} \end{pmatrix} = \begin{pmatrix} \sigma & T\alpha \\ T\bar{\alpha} & T\bar{\kappa} \end{pmatrix} \begin{pmatrix} E_{x} \\ -\frac{\partial_{x}T}{T} \end{pmatrix}$$

$$Q^{\mathsf{x}} = T^{\mathsf{x}t} - \mu_0 J^{\mathsf{x}}$$

$$\sigma = \langle J^{\mathsf{x}} J^{\mathsf{x}} \rangle, \qquad T \alpha = \langle J^{\mathsf{x}} Q^{\mathsf{x}} \rangle, \qquad T \bar{\kappa} = \langle Q^{\mathsf{x}} Q^{\mathsf{x}} \rangle$$

We can evaluate it by taking the variations with respect to the perturbative sources  $\delta A_x(\omega)$  and  $\delta g_{tx}(\omega)$ 

The AC conductivities can be evaluated

$$\begin{aligned} \sigma(\omega) &= \tilde{\sigma} + \frac{\tilde{\rho}^2(\Omega - i\omega) - \tilde{\gamma}^2 \omega_0^2(\Gamma - i\omega) - 2\tilde{\rho}\tilde{\gamma}\omega_0^2}{\mu_0^2 \chi_{\pi\pi}((\Gamma - i\omega)(\Omega - i\omega) + \omega_0^2)} \\ \frac{T}{\mu_0} \alpha(\omega) &= -\tilde{\sigma} + \frac{\tilde{\rho}\tilde{s}((\Omega - i\omega) + \tilde{\gamma}^2 \omega_0^2(\Gamma - i\omega) - (\tilde{s} - \tilde{\rho})\tilde{\gamma}\omega_0^2}{\mu_0^2 \chi_{\pi\pi}((\Gamma - i\omega)(\Omega - i\omega) + \omega_0^2)} \\ \frac{T}{\mu_0^2} \tilde{\kappa}(\omega) &= \tilde{\sigma} + \frac{\tilde{s}^2(\Omega - i\omega) - \tilde{\gamma}^2 \omega_0^2(\Gamma - i\omega) + 2\tilde{s}\tilde{\gamma}\omega_0^2}{\mu_0^2 \chi_{\pi\pi}((\Gamma - i\omega)(\Omega - i\omega) + \omega_0^2)}, \end{aligned}$$

where  $\tilde{\rho} = \mu_0 \rho$ ,  $\tilde{s} = T_0 s$ ,  $\chi_{\pi\pi} = \tilde{\rho} + \tilde{s}$  and

$$ilde{\sigma} = \sigma_q + \xi \gamma^2, \ \ \omega_0^2 = rac{Gm_\phi^2}{\chi_{\pi\pi}}, \ \ ilde{\gamma} = \mu_0 \chi_{\pi\pi}, \ \ \Omega = \xi m_\phi^2 G$$

At  $\omega_0 > \Omega$  these are the asymmetric peaks at  $\omega \approx \pm \omega_0 - i(\Gamma + \Omega)$ 

DC conductivities have simple form

$$\sigma = \sigma_q + \xi \frac{(\rho - \gamma)^2}{1 + \xi \Gamma \chi_{\pi\pi}},$$
  
$$\frac{T}{\mu_0} \alpha = -\sigma_q + \xi \frac{(\rho - \gamma)(\frac{sT}{\mu_0} + \gamma)}{1 + \xi \Gamma \chi_{\pi\pi}}$$
  
$$\frac{T}{\mu_0^2} \bar{\kappa} = \sigma_q + \xi \frac{(\frac{sT}{\mu_0} + \gamma)^2}{1 + \xi \Gamma \chi_{\pi\pi}}$$

At small pinning scale  $\Gamma$ , DC transport is insensitive to impurities!

In conventional gapped CDW in Fermi liquid:  $\sigma_q = 0$ ,  $\xi = 0$ , therefore conventional pinned CDW is an insulator.

A. Krikun: Thermo-electric transport properties in holographic models with pinned charge density waves

We consider a holographic model which develops spontaneous CDW order

$$S = \int d^4x \sqrt{-g} \left( R - 2\Lambda - \frac{1}{2} (\partial \psi)^2 - \frac{\tau(\psi)}{4} F^2 - W(\psi) \right) - \frac{1}{2} \int \vartheta(\psi) F \wedge F.$$

With potentials

$$\tau(\psi) \approx 1 + \dots,$$
  

$$W(\psi) \approx -\psi^2 + \dots,$$
  

$$\vartheta(\psi) \approx \frac{c_1}{2\sqrt{6}}\psi + \dots$$

And explicit ionic lattice

$$\mu = \mu_0(1 + A\cos(px))$$



The spontaneous structure arises as an instability of horizon



The spontaneous structure arises as an instability of horizon



#### T.Andrade, A.K. et al, 1710.05791, Nat.phys.,14.10(2018):1049

The order parameter grows as the temperature is lowered

$$\delta A_y \sim \sin(kx), \qquad \delta \psi \sim \cos(kx) \ \delta 
ho \sim 
ho^{(0)} + 
ho^{(2)} \sin(2kx)$$



# Transport properties

#### Thermo-electric transport

Again, the matrix of thermo-electric conductivities can be computed by turning on perturbative sources  $\delta A_x(\omega)$  and  $\delta g_{tx}(\omega)$ 

$$\begin{pmatrix} J^{x} \\ Q^{x} \end{pmatrix} = \begin{pmatrix} \sigma & T\alpha \\ T\bar{\alpha} & T\bar{\kappa} \end{pmatrix} \begin{pmatrix} E_{x} \\ -\frac{\partial_{x}T}{T} \end{pmatrix}$$

$$Q^{x} = T^{xt} - \mu_0 J^{x}$$

$$\sigma = \langle J^{x}J^{x}\rangle, \qquad T\alpha = \langle J^{x}Q^{x}\rangle, \qquad T\bar{\kappa} = \langle Q^{x}Q^{x}\rangle$$

i.e.

$$\langle T^{xt} T^{xt} \rangle = \frac{\delta^2 S_{\text{AdS}}}{\delta g_{tx} \delta g_{tx}}$$

### Electric DC conductivity

The transport is greatly affected by the emergence of order parameter



The conductivity drops, but it is not gapped ( $\sim e^{-\frac{\Delta}{T}}$ )like it should be in a pinned CDW. Our aim is to characterize this remaining transport at  $T \ll T_c$ 

T.Andrade, A.K. et al, 1710.05791, Nat.phys.,14.10(2018):1049

### AC conductivities

The AC conductivities display the expected peaks, therefore **EFT** is applicable



#### **EFT** parameters

The EFT parameters display model dependent power-laws in T



#### DC conductivities

The DC conductivities have the similar unconventional features as in cuprates



#### Contributions



#### The role of impurities

The DC transport is not controlled by the scale of pinning



#### Seebeck coefficient

Seebeck coefficient in this particular model diverges. It's behavior is controlled by the IR scaling exponents



c.f. the talk by Antoine Georges

### Conclusion

- Effective theory of transport in pinned CDW includes several parameters, which are usually set to zero in conventional treatments
- Holography provides an example of the system, where these parameters play a role
- The expanded phenomenology displays gapless insulators and change of sign in thermo-power, due to a balance between contributions
- The EFT framework is useful for the analysis of experimental data