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» States of fermionic matter at finite density.
» Compressible: 92/0u#0asT — 0.

» Large number of gapless excitations.



Fermi liquid theory
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Screening leads to gapped (short-range) boson

Fermi surface
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I' ~ max(w*, T?)

Fermions interact with gapped boson but just become renormalized quasiparticles (which are
similar to the original non-interacting fermions).
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Strange metals

* Several quasi-two dimensional or layered materials with strongly
correlated electrons display a ubiquitous and poorly understood
metallic phase at intermediate values of carrier density.

* Unlike Landau Fermi liquids, which have a DC electrical resistivity
that scalesas I’ 2, these strange metals have a resistivity that scales
as 1'. The exact mechanisms behind this are not (yet) known.

* This often occurs at finite /" above a quantum critical point.
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Strange metals

* While, at high temperatures, T-linear resistivitZy might putatively be explained by phonons, at low
temperatures one expects p(T) = p(0) + aT™ for weakly interacting Fermi liquids, with the
temperature dependence arising from the parts of the quasiparticle decay process that involve
momentum and current relaxing Umklapp scattering.

* This T-linear behavior is often accompanied by other signs of strong interactions - such as a
large, T-dependent quasiparticle effective mass that shows up in specific heat measurements.
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Non-Fermi liquid

» Compressible: 02/0n#0asT — 0.
\ * Fermi surface is still well defined in

translationally invariant systems.

body energies cannot be identified in terms of a
set {"x} of quasiparticles with energies €(k) as
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J * No quasiparticle excitations: the low-lying many-
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Non-Fermi liquid

* Possible scenario: interactions between electrons are mediated by gapless bosonic
fluctuations.

H = Ze

)itk + g Z TR

* Such a situation can occur when excitations around a Fermi surface are coupled to
fluctuations of a quantum critical order parameter, or an emergent gauge field, especially in
two spatial dimensions. This is the effective low-energy field theory of many different models.
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Non-Fermi liquid

* The gapless ¢ field now means that the effective interactions between electrons are not
screened and are long ranged. Further, the bosonic excitations are now heavily damped,
and acquire non-trivial dynamics.

(2, q) ~ [2/q

* Interactions between fermions mediated by the damped bosons are strong,
and lead to the destruction of fermion quasiparticles.

| s\%
Gy (k,iw) ~ [' > max(|w|,T). >

iw —e(k) + il

[ ~ max(w?3,T%/3) (d=2)

1-loop fermion self energy is too large, this prevents a weak-coupling expansion in g.



SYK Model: Solvable Non-Fermi liquid at a point

N — 00

H= > Jiuflflffie {1} =6

i 5.k, 1=1
< Jij >=10, < |Jiu|? >= J?/(8N?)

- Consists of large-N number of sites on a single “quantum dot”, with random all-to-all interactions.
- The Hamiltonian has no quadratic kinetic terms.

- The randomness self-averages in the large-N limit, leading to a gapless non-Fermi liquid ground state.

(1) = _J*GA (T)G(—T), Gtrong coupling approach that A
| systematically resums diagrams to all

G(iwy,) = - — . |orders, leading to exact Schwinger-
Wwp — 2(wn)  |p i b areelN [
\Dyson equations in the large-N limit.,

S. Sachdev and J. Ye, PRL 70, 3339 (1993)
S. Sachdev, PRX 041025 (2015)
A. Kitaev, KITP Talks (2015)



SYK Model: Solvable Non-Fermi liquid at a point
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- Consists of large-N number of sites on a single “quantum dot”, with random all-to-all interactions.

- The Hamiltonian has no quadratic kinetic terms.

- The randomness self-averages in the large-N limit, leading to a gapless non-Fermi liquid ground state.
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SYK fermion-boson models at a point

* The non-Fermi liquids at quantum critical points motivated earlier require
fermions interacting with gapless bosons. So we need something like

H=7) girfifion

ijk
* Various works:

A. A. P. and S. Sachdev, PRB 98, 125134 (2018) (0+1 dimensional
fermions randomly Yukawa coupled to “gauge fields”) H —

E. Marcus and S. Vandoren, JHEP 2019, 166 (2019) (0+1 dimensional
fermions randomly Yukawa coupled to scalars)

Y. Wang, PRL 124, 017002 (2020) (Superconducting instability at 1/N
order in 0+1 dimensions) Z S : >

[. Esterlis and J. Schmalian PRB 100, 115132 (2019) (Superconducting
instability at large N for real 9i5% in o+1 dimensions)

. | “RPA” Schwinger-Dyson equations
J. Kim, X. Cao, and E. Altman PRB 101, 125112 (2020) (Different

distributions of Yijk instead of fully random in o+1 dimensions)



Non-Fermi liquid
We apply techniques from the SYK model...

 2+1 dimensions: retain spatial translational invariance.

* Promote both fermions and bosons to large N flavors at every site: ¥ — V5, ¢ — &5,

 Use flavor random complex gaussian couplings:
g = Gijk, Hint ~ Zgijk¢j¢j¢k

ijk
* Average over random couplings using replicas like in SYK, which should be
equivalent to self-averaging in the large N limit.

(Gijk) =0, <\9ijk‘2> — 92/N2> gfjk = YGjik-

4 - )
Note: like in SYK, the large N

limit is now taken before the
low energy limit.

J

|. Esterlis, H. Guo, A. A. P.,, and S. Sachdev, PRB 103, 235129 (2021)



Non-Fermi liquid
We apply techniques from the SYK model...

 2+1 dimensions: retain spatial translational invariance.
* Promote both fermions and bosons to large N flavors at every site: ¥ — %5, ¢ — &5,

» Use flavor random complex gaussian couplings:
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Non-Fermi liquid
We apply techniques from the SYK model...

* Large N saddle point just gives the “RPA”
equations from “Eliashberg theory”:

1
iw —e(k) — 2k, iw)
1
(02 +q* — Il(q,i2) + M?

G(k,iw) =

D(q,i2) =

M(k,iw) = g° /qudQD(q, Q)G (k + q, 1w + i€2)

I1(q, i) = g° /kode(k, iw)G(k + q,iw + i§2)

Exact low energy solution at 7 = 0: X(k, iw) ~ —isgn(w)|w[**, T(q,i?) ~ [2|/|d].

(at criticality, where M=o0)

|. Esterlis, H. Guo, A. A. P.,, and S. Sachdev, PRB 103, 235129 (2021)



The theoretical models discussed so far are all translationally
invariant. Because of the conserved total momentum, and a finite
charge density that prevents excitation of currents without excitation
of momentum, they have an infinite DC conductivity (up to some weak
Umklapp processes on a lattice), as a finite DC conductivity requires
current, and therefore momentum, to relax.

- A

Presence of impurities (red bumpers) is
required to degrade momentum and
therefore current, irrespective of whether
quasiparticles are well-defined or not. y

\_

We now move on to adapting such models of metallic quantum critical
points to the experimentally observed problem of T-linear resistivity.



“Marginal Fermi liquid” phenomenology

* Varma et al (Phys. Rev. Lett. 63,1906 (1089)), proposed a phenomenological form of
the electron self-energy representing the corrections to the motion of electronic
quasiparticles coming from the scattering of electrons off a specific form of bosonic

fluctuations:
Y(k,w>T) x —iwln(A/|w|).

M x(k,w) ~ In(A/flw]) ~Im[Z%(k,w > T)] « |w].
: > Til = —Im[>X"(k,w < T)] xT.

* If the electron scattering rate 1/ is interpreted as the transport scattering rate, this will lead
to a T-linear resistivity. However, this requires the scattering to not conserve momentum.

* This is a phenomenological ansatz, and not a systematic strongly coupled field theory that
provides a framework for non-perturbative effects of electron interactions.



“Marginal Fermi liquid” phenomenology

... works reasonably well in many cases.
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Disordered quantum critical metals

The key to getting quantum critical T-linear resistivity, and near “Planckian” dissipation
will be to include the effects of spatial disorder, in order to relax currents and momentum.

One can naively just add a random potential term:
1
o= /53 [ e vyl )00

At low energies at the quantum critical point, this leads to a diffusive boson
propagator D(?.a) = 1/(¢° +7/90), and a marginal Fermi liquid contribution to the
fermion self energy (in addition to the residual impurity scattering).

However, because the fermion-boson interactions largely represent forward
scattering, the marginal Fermi liquid contribution does not contribute to the
resistivity (which remains a constant at low 7).

A. A. P, H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990



Disordered quantum critical metals

* We therefore consider the possibility of disordered interactions:

1 5 1 2 /
Hais = TN %:/d r vi;(r)y] (r)1;(r) Hing = ) /d r (gijk + 9ijx ()] ()15 (r)dr(r)

1,0,k

* At low energies at the quantum critical point, this leads to a diffusive boson
propagator D(2,a) = 1/(¢* + 7|, and a marginal Fermi liquid contribution to the
fermion self energy (in addition to the residual impurity scattering).

* However, because the fermion-boson interactions now contain a significant non-
forward scattering component, part of the marginal Fermi liquid contribution
contributes to the resistivity (which gets a T-linear correction to the residual piece).

* The slope of the T-linear correction is independent of the residual resistivity.

A. A. P., H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990



How it works

L =907 +e(V) = p+v(r)r + 607 + V2 —mi) oy + (g + g (r) [0
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* Non-interacting fermion propagator “*“*~ (sgsmte) —urk) g essentially local for vpk < T') @0t (iom)<)

* This leads to |«“|boson damping and therefore z = 2 boson dynamics (giving a {4’ In(1/T) specific heat in d = 2).
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* At low (with respect to ¥F) momentum scales, the essentially local fermio/n therefore couples to the local boson
fluctuations, giving rise to marginal Fermi liquid behavior. The disorder 9 actually couples the fermion to local
bosonic fluctuations at all momentum scales.

d2q

K@) ~ (6 @)or(-) ~ [ ST ().

A. A. P., H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990



How it works

* At low (with respect to #F) momentum scales, the essentially local fermio,n therefore couples to the local boson
fluctuations, giving rise to marginal Fermi liquid behavior. The disorder 9 actually couples the fermion to local
bosonic fluctuations at all momentum scales.

/ A2
% T % ~ —iw In <_>
A2 ‘\‘ 'l,
—iw In <—>
w|

AQ
Forward scattering (boson g~o0), no current relaxation. —w In (ﬁ
W

Large angle disordered scattering
(boson g >>0), current + momentum
relaxation: determines transport.

Conductivity: o(w) ~ Tirans(Ww)

1

Ttrans (w)
2.
9

-~ ,02 +g/2|w|

Residual resistivity is determined by v?; Linear-in-T" resistivity determined by g'?.

A. A. P., H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990



4 N

These are the types of diagrams selected
by the large-N construction; full
summation of ladders agrees with

perturbative computation.

\_ J

How it works

Cancel for g but not g
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Vertex corrections only involve g
couplings due to inversion symmetry,
whereas self-energy corrections involve

both g and g’ couplings.
% g g coupling y

Leading contributions cancel in the large £F limit; only sub-leading «*/Er terms survive.

A. A. P., H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990



How it works

* Previous approaches towards constructing marginal Fermi liquids with T-linear resistivity (Patel et al, Phys. Rev. X. 8,
021049 (2018) and Chowdhury et al, Phys. Rev. X. 7, 031024 (2018)) involved local SYK criticality. Other DMF T-based
approaches also involve locally critical impurities with marginal susceptibilities (besides also requiring d = 00).

* Our new approach involves no local criticality. The boson is d = 2, but fermions can couple to fluctuations
beyond just the long-wavelength ones.

d2q

K@) ~ (6 @)or(-) ~ [ ST ().

A. A. P., H. Guo, I. Esterlis, and S. Sachdev, arXiv:2203.04990




Planckian dissipation

In most strange metals, attempting to express the DC resistivity using the Drude formula,

m™ 1

p:

)

ne? T

where m™ is the effective electron mass measured in an adjoining Fermi liquid phase and 71 is the carrier
density, gives a surprisingly universal transport scattering rate

1 kn'T
P,
T h

, C~O(1).

independent of material parameters in very different materials. This phenomenon is termed “Planckian
dissipation”.



Fully disordered interactions - Planckian metal

S:/dT/erzwi(r,T) o, Zvﬂi u wi(r77)+%/d7/d2rz¢i(“) -0 QZ:

/
random local interactions Yijk (T).
and self energies.

continuous phase transition as 7 is tuned.

l. Esterlis, H. Guo, A. A. P.,, and S. Sachdev, PRB 103, 235129 (2021)
E. E. Aldape, T. Cookmeyer, A. A. P., and E. Altman, arXiv:2012.00763 (PRB, in press)
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)

Consists of a large N number of strongly coupled electron and boson fields in 2+1 dimensions, with fully
large N limit leads to an exact set of Eliashberg equations for the electron and boson Green’s functions
The model describes a metallic quantum critical point at 7 = 7¢, when the boson is gapless at 7' = 0, and a

Large N self-interaction for the bosons is added to sensibly account for their thermal fluctuations at 7' # 0.



Fully disordered interactions - Planckian metal

ig°mmy, . ( A )
w In m .

YX(kyw>T) = s
% | o A
' > S k,w < T)] = T In (111 ( >> .

— = —Im
47

ﬂ

* Electrons couple to the local boson fluctuations instead of the long wavelength ones.

* The large N exact Eliashberg equations then yield a marginal Fermi liquid electron self energy at
the QCP in 2+1 dimensions.

 Behavior beyond large N can be explored systematically in terms of the fluctuating bilocal G, 2
fields and constraint field X enforcing the boson self interaction. marginal Fermi liquid likely to
persist.

* Since the interaction is random in space and does not conserve momentum, the self energy also
represents the transport scattering rate 1/7, giving nearly T linear resistivity.



Fully disordered interactions - Planckian metal

* Away from the critical point, the boson is gapped, and the electrons then form a
renormalized Fermi liquid, with a 7 resistivity.

 However, the effective mass of the electrons is renormalized:

mT_ | Z,(?Z(iw) 1 gz mmy n ( /,\mb \/ VYe ) g g*mm n ( fl\mb \/ Y Ye ) | g mmy > 1.
m Ow 030, T—0 272 g*m? \ v — e 27? g*m? \ v — e (strong coupling)
* Then, the Drude transport scattering rate at low 7'is
1 ne?p _1m N kT Inln (£) Or ~ kBTlnln/(\%)
T* m* T m* 2 h ln(/g%%\/%)’ h (T)

which is nearly universal, with all non-universalities pushed into slowly varying logs. This
provides a simple explanation for the phenomenon of Planckian dissipation. The fully
random interactions ensure that exactly the same couplings contribute to both the
mass renormalization and the transport scattering rate, yielding the Planckian
behavior. This is not the case without full randomness.



Summary and outlook

Quantum critical points with disordered interactions provide routes to T-linear resistivity and “Planckian dissipation” in
two spatial dimensions. They additionally realize z = 2 boson dynamics, and therefore also a 7'In(1/T) specific heat. There
is no local criticality.

These results should even hold for disordered interactions with a finite g order parameter: Line = (9 + ¢'(r))e" " Plab ¢, + Hee,
or in multi-band models (Aldape et al 2022), or for disordered pairing interactions.

These can be described in a controlled manner at strong coupling using new large-N techniques, 1/N corrections can
also be systematically computed. However, the main use of the new large-N method is to formally justify the RPA theory
(which is also self-consistent at N =1), and systematically compute possible corrections to it. The physics we described
therefore also holds for RPA theory with N=1.

The experimental values of residual resistivity, ARPES energy dependence of single-particle lifetime, and slope of the

linear ,resistivity, optical resistivity etc, can together (in conjunction with carrier density etc), be used to determine
v, 9,9 .

Would be interesting to explore thermal transport: these models can possibly explain why L = x/(cT) = Lo = (7°/3)(ks/e) at
low T even though » = po +aT'(Michon et al, Phys. Rev. X. 8, 041010 (2018)).

[} ° ° ° [} ° ° . /
Determine microscopic origin of the new and essential ingredient: 9 ...
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Thank you for your attention!



